Associative Learning Changes the Organization of Functional Excitatory Circuits Targeting the Supragranular Layers of Mouse Barrel Cortex

نویسندگان

  • Céline Rosselet
  • Maxime Fieschi
  • Sandrine Hugues
  • Ingrid Bureau
چکیده

In primary sensory cortices, neuronal circuits change throughout life as a function of learning. During associative learning a neutral sensory stimulus acquires the emotional valence of an aversive event or a reward after repetitive contingent pairing. One important consequence is the enlargement of the representational area of the conditioned stimulus in the cortical map of its sensory modality. The details of this phenomenon at the circuit level are still largely unknown. Here, mice were trained in a differential conditioning paradigm where the deflections of one whisker row were paired with tail shocks and the deflections of two others were not. Changes occurring in excitatory circuits of barrel cortex were then examined in brain slices with laser scanning photostimulation mapping. We found that learning affected the projections targeting the supragranular layers in the columns of unpaired whiskers: Pyramidal cells located in layer (L) 3 received enhanced inputs from L5A cells located in their home column and new inputs from L2/3 and L4 cells located in the neighboring column of the paired whisker. In contrast, the excitatory projections impinging onto L2/3 cells in the column of the paired whisker were not altered. Together, these data reveal that associative learning alters the canonical columnar organization of functional ascending L4 projections and strengthens transcolumnar excitatory projections in barrel cortex. These phenomena could participate to the transformation of the whisker somatotopic map induced by associative learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex

Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...

متن کامل

Postnatal Changes of Conduction Velocity of the Fibers in and out of the Mouse Barrel Cortex

There are some conflicts about constancy of conduction velocity (CV) in a given tract of nervous system. By recording excitatory postsynaptic currents (EPSC) in layer IV of the somatosensory cortex we tried to clear changes in CV of thalamocortical tract of mice aged 3 to 50 days old. Field potentials and EPSC were recorded in the layer IV by stimulation of ventrobasal nucleus of thalamus (VB) ...

متن کامل

Interspersed Distribution of Selectivity to Kinematic Stimulus Features in Supragranular Layers of Mouse Barrel Cortex.

Neurons in the primary sensory regions of neocortex have heterogeneous response properties. The spatial arrangement of neurons with particular response properties is a key aspect of population representations and can shed light on how local circuits are wired. Here, we investigated how neurons with sensitivity to different kinematic features of whisker stimuli are distributed across local circu...

متن کامل

Noradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex

Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...

متن کامل

Synaptic Computation and Sensory Processing in Neocortical Layer 2/3

Computations in neocortical circuits are predominantly driven by synaptic integration of excitatory glutamatergic and inhibitory GABAergic inputs. New optical, electrophysiological, and genetic methods allow detailed in vivo investigation of the superficial neocortical layers 2 and 3 (L2/3). Here, we review current knowledge of mouse L2/3 sensory cortex, focusing on somatosensory barrel cortex ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010